- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003100000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Antonopoulos, Timos (4)
-
Judson, Samuel (4)
-
Könighofer, Bettina (4)
-
Piskac, Ruzica (4)
-
Cano, Filip (3)
-
Elacqua, Matthew (3)
-
Shapiro, Scott J (3)
-
Bjørner, Katrine (1)
-
Cano Córdoba, Filip (1)
-
Shapiro, Scott J. (1)
-
Shoemaker, Nicholas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Judson, Samuel; Elacqua, Matthew; Cano, Filip; Antonopoulos, Timos; Könighofer, Bettina; Shapiro, Scott J; Piskac, Ruzica (, Springer, Cham)
-
Judson, Samuel; Elacqua, Matthew; Cano, Filip; Antonopoulos, Timos; Könighofer, Bettina; Shapiro, Scott J; Piskac, Ruzica (, ACM)
-
Cano Córdoba, Filip; Judson, Samuel; Antonopoulos, Timos; Bjørner, Katrine; Shoemaker, Nicholas; Shapiro, Scott J.; Piskac, Ruzica; Könighofer, Bettina (, International Joint Conferences on Artificial Intelligence Organization)Principled accountability for autonomous decision-making in uncertain environments requires distinguishing intentional outcomes from negligent designs from actual accidents. We propose analyzing the behavior of autonomous agents through a quantitative measure of the evidence of intentional behavior. We model an uncertain environment as a Markov Decision Process (MDP). For a given scenario, we rely on probabilistic model checking to compute the ability of the agent to influence reaching a certain event. We call this the scope of agency. We say that there is evidence of intentional behavior if the scope of agency is high and the decisions of the agent are close to being optimal for reaching the event. Our method applies counterfactual reasoning to automatically generate relevant scenarios that can be analyzed to increase the confidence of our assessment. In a case study, we show how our method can distinguish between 'intentional' and 'accidental' traffic collisions.more » « less
An official website of the United States government

Full Text Available